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Why do Statistical Studies?

• Guide for Model Builders

• determine the easiest ways to obtain certain 
space-time properties

• Possible method to extract phenomenological 
predictions from string theory

• Hypothesis generation for new string 
properties and correlations



Limitations of statistical 
studies

• Results only Statistical 

• “Lamppost” Problem 

• “Bull’s Eye” Problem

• Statistical Bias effects 

(can only explore certain parts of Landscape)

 (not always clear what the target is)

(may not even explore space randomly)

(not absolute results)



Landscaping

• Lots of theoretical speculation on the form of 
the String Landscape

• Few actual statistical studies of the landscape 
(Dijkstra et al. hep-th/0411129, Blumenhagen et al.            
hep-th/0510170, Dienes. hep-th/0602286)

• What do we find when we look at the space 
of actual string models that can be 
constructed and analyzed? 



Why study the Heterotic 
String Landscape?

• Models generically more constrained than 
Type I models

• Lots of positive phenomenological features 
(gauge coupling unification, rich massless 
spectrum)

• Very different mechanism for generating 
gauge groups, thus correlations are expected 
to be different



How do we distinguish 
models?

•
• Particle spectrum

• Gauge group

• Number of SUSY Generators

Characteristics in space-time:

If any quantity is different then the model is considered 
distinct



Heterotic String Models in 
D=10

• Only nine unique models

• Maximal SUSY is N=1

• Large variation in gauge groups

• Rank of gauge group is ≤16



Orbifold Relations amongst 
models
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Figure 1: The relation between the seven non-supersymmetric heterotic string models in
ten dimensions and the supersymmetric SO(32) and E8 × E8 string models. Each arrow
indicates a ZZ2 orbifold relation that breaks spacetime supersymmetry. Only the tachyon-
free SO(16) × SO(16) string can be realized as a ZZ2 orbifold of both the supersymmetric
SO(32) string and the E8 × E8 string.

1.2 Our approach

Of course, finding the duals of non-supersymmetric strings is not a simple un-
dertaking, for many of the techniques that have been exploited in finding evidence
for supersymmetric duality relations no longer apply when supersymmetry is ab-
sent. For example, there do not a priori exist any special non-supersymmetric string
states (the analogues of BPS-saturated states) whose masses are protected against
strong-coupling effects. Likewise, upon compactification, the moduli spaces of non-
supersymmetric strings are not nearly as well understood as their supersymmetric
counterparts.

One natural idea for deriving duals of the non-supersymmetric theories might
be to start with the duals of the supersymmetric SO(32) or E8 × E8 theories, and
then to duplicate the action of the appropriate ZZ2 orbifolds on these dual theories.
Unfortunately, since these orbifolds break supersymmetry, they need not necessar-
ily commute with strong/weak coupling duality. This issue has been discussed in
Ref. [15]. Indeed, in some sense, the fundamental problem associated with this ap-
proach is that orbifold relations are discrete: one is dealing either with the original
theory or with the orbifolded final theory. One cannot examine how, and where, the
duality relation might begin to go wrong in passing between the original and final
theories.

Therefore, in order to derive strong-coupling duals of these non-supersymmetric
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Shatter

• Can be used as an organizing principle for the 
heterotic landscape

• Not every possible shatter present

• Different levels of SUSY have different 
possible shatter levels

Shatter = # of gauge group factors

Group: N = 0 N = 1 N = 2 N = 4
U1 98.79 99.94 99.72 89.19

SU2 97.72 97.44 96.57 70.17
SU3 19.58 47.84 60.42 34.13
SU4 53.61 51.04 62.76 42.94
SU5 2.79 7.36 20.29 23.72
SU>5 4.03 6.60 18.80 53.65
SO8 19.83 13.75 19.73 19.82
SO10 6.19 4.83 7.57 15.42
SO>10 3.75 2.69 4.72 19.92
E6,7,8 0.14 0.27 1.02 16.12

3× 2× 1 18.92 46.6 58.65 23.92
4× 2× 2 51.04 47.03 55.52 19.02

Shatter N = 1 SUSY N = 0 SUSY N = 0 SUSY
level: Tachyon-free Tachyonic

1 SO(32) SO(32), E8

2 E8 × E8 SO(16)× SO(16) SO(16)× E8, SO(24)× SO(8), SU(16)× U(1)
4 E2

7 × SU(2)2

Group: N = 0 N = 1 N = 2 N = 4
SU3 1 1 1 1
SU4 2.74 1.07 1.04 1.26
SU5 0.14 0.15 0.34 0.69
SU>5 0.21 0.14 0.31 1.57
SO8 1.01 0.29 0.33 0.58
SO10 0.32 0.10 0.13 0.45
SO>10 0.19 0.06 0.08 0.58
E6,7,8 0.01 0.01 0.02 0.47

3× 2× 1 0.97 0.97 0.97 0.70
4× 2× 2 2.61 0.98 0.92 0.56

Group: SU3 SU4 SU5 SU>5 SO8 SO10 SO>10 E6,7,8 SM PS
N = 0 1 3.87 2.01 51.1 10.4 33.8 57.6 4.5 .96 3.97
N = 1 1 9.37 15.25 72.1 34.6 98.6 178 9.34 .978 10.2
N = 4 1 1.13 .70 1.36 .50 .41 .47 1.35 .71 .51
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Lessons from D = 10

• Only some gauge groups realizable

• Orbifold techniques utilized for this study will 
not find every model

• Correlations can exist between quantities 
which are formally independent in Quantum 
Field Theory (e.g. gauge group and 
supersymmetry)

Now let’s go to D = 4!



Quick Introduction to D=4 
Heterotic Strings

• Many more than nine distinct models

• Maximal SUSY is N=4

• Rank of gauge group is ≤22



Main Characteristics of this 
Study

• Perturbative Heterotic Strings 

• Millions of models randomly generated and 
analyzed by computer, all satisfying worldsheet 
self-consistency constraints 

• Models with all of the levels of space-time SUSY 
realizable in D=4

• Uses Free Fermionic Construction                               

(main area for string phenomenology
 in 80’s and 90’s) 

N=0,1,2,4

partially overlaps with 
Narain bosonic lattice 
compactifications and 
orbifolds with arbitrary
 Wilson Lines 

all gauge groups rank 16+6=22



The Free Fermionic 
Construction Method (very 

quickly)
• String is taken to be two CFTs (left-movers are 

conformal, right-movers are super-conformal)

• CFTs are made of tensor products of free non-
interacting complex fermionic fields

• Create different models by changing the 
boundary conditions of the fields around the 
worldsheet torus while also changing the phase 
for the spin-structure’s contribution to the string 
partition function. (Phases are +/- signs for 
GSOs) Kawai et al, NPB 288, 1 (1987) 

Antoniadis et al, NPB 289, 87 
(1987)



Advantages of Free 
Fermionic Method

• Models which are geometrically complex may 
be realized relatively easily

• Can get the full spectrum of the string model 

• Can be put on the computer easily
D. Sénéchal, PRD 39, 3717 (1989).



Code I: Generating Models

Level of SUSY

Seed for rand()

Run time

KLT
 5
0011011011  1111111111111111111111  001000
0101000101  1111111111110000000000  000010
0011000000  1110000000001110000000  001101
0110110000  1001111000000001110000  011010
1100001001  1101100110001101101100  010101

• Give desired level of SUSY, seed for rand, and 
run-time and KLT generates self-consistent sets 
of vectors which correspond to models

• For vectors, 0(1) = (anti-)periodic 

right-movers left-movers phases



Code II: Analyzing Models

• Determine all possible string excitations

• Verify that excitation is level-matched

• Verify that excitation satisfies GSO constraints

Steps to analyze any particle in spectrum:

Steps to classify model:

find 
gravitinos

determine N

identify &
 analyze 

gauge bosons

determine gauge group, G

all other states classified 
by “charges” under G and 

grouped into suitable multiplets

determine spectrum



Supersymmetry N = 0

57 gauge bosons in SU(4) x SU(2)^14 x U(1)^5

34 Fermions irreps:
24      010 1 1 0 0 0 0 0 0 0 0 0 0 0 0   0  0  0  0  0  r
24      010 0 0 0 0 1 1 0 0 0 0 0 0 0 0   0  0  0  0  0  r
24      010 0 0 0 0 0 0 0 0 1 1 0 0 0 0   0  0  0  0  0  r
24      010 0 0 0 0 0 0 0 0 0 0 1 1 0 0   0  0  0  0  0  r
16      000 1 1 1 1 0 0 0 0 0 0 0 0 0 0   0  0  0  0  0  r
16      000 1 1 0 0 0 0 0 0 0 0 0 0 1 1   0  0  0  0  0  r
16      000 0 0 1 1 1 1 0 0 0 0 0 0 0 0   0  0  0  0  0  r
16      000 0 0 1 1 0 0 0 0 1 1 0 0 0 0   0  0  0  0  0  r
...
4       000 1 1 0 0 0 0 0 0 0 0 0 0 0 0   0  0  0  0  2  c
4       000 0 0 0 0 1 1 0 0 0 0 0 0 0 0   0  0  0  0  2  c
4       000 0 0 0 0 0 0 1 1 0 0 0 0 0 0   0  2  0  0  0  c
4       000 0 0 0 0 0 0 1 1 0 0 0 0 0 0   0  0  0  2  0  c
...
35 Scalar irreps:
24      010 0 0 1 1 0 0 0 0 0 0 0 0 0 0   0  0  0  0  0
...

Sample Output
for each model:



How many models were 
analyzed?

Class of model
Number of 

models
Attempts/Model

N=0 1.6 x 106 2.76

N=1 1.25 x 106 3.40

N=2 0.5 x 106 28.15

N=4 900 420.70



Shatter in D = 4 

• Only one distinct gauge group with a shatter 
of one: SO(44) (just like SO(32) in D = 10)

• Lots of distinct gauge groups with a shatter of 
two (but they all consist of SO(44-n) x SO(n))

• Highest level of shatter is 22 and gauge 

groups at that level are U(1)22-n x SU(2)n



What level of shatter do we 
expect?

large numbers of factors dominate
even numbers of gauge factors dominate



As  SUSY increases, even/odd difference disappears!

peak probability shifts towards smaller numbers of factors

With more SUSY...



No 
Standard Model 

gauge group until 
a large number of 

gauge group 
factors

When does the Standard 
Model gauge group appear?



How often do we obtain unique 
gauge groups?

As SUSY increases, 
new models are
forced to have 

new gauge groups.   



For all levels of 
SUSY, same 

probability of 
production.

How likely are different 
gauge groups?



Group: N = 0 N = 1 N = 2 N = 4
U1 98.79 99.94 99.72 89.19

SU2 97.72 97.44 96.57 70.17
SU3 19.58 47.84 60.42 34.13
SU4 53.61 51.04 62.76 42.94
SU5 2.79 7.36 20.29 23.72
SU>5 4.03 6.60 18.80 53.65
SO8 19.83 13.75 19.73 19.82
SO10 6.19 4.83 7.57 15.42
SO>10 3.75 2.69 4.72 19.92
E6,7,8 0.14 0.27 1.02 16.12

3× 2× 1 18.92 46.6 58.65 23.92
4× 2× 2 51.04 47.03 55.52 19.02

Group: SU3 SU4 SU5 SU>5 SO8 SO10 SO>10 E6,7,8 SM PS
N = 0 1 3.87 2.01 51.1 10.4 33.8 57.6 4.5 .96 3.97
N = 1 1 9.37 15.25 72.1 34.6 98.6 178 9.34 .978 10.2
N = 4 1 1.13 .70 1.36 .50 .41 .47 1.35 .71 .51

Group: N = 0 N = 1 N = 2 N = 4
SU3 1 1 1
SU4 3.87 9.37 1.13
SU5 2.01 15.25 0.70
SU>5 51.1 72.1 1.36
SO8 10.4 34.6 .50
SO10 33.8 98.6 0.41
SO>10 57.6 178.0 0.47
E6,7,8 4.5 9.34 1.35

3× 2× 1 0.96 .978 .71
4× 2× 2 3.97 10.2 .51

1

Standard Model 
limited by SU(3)

Standard Model
Pati-Salam

How likely are different 
gauge group factors?

smaller groups 
much more 
common



A brief interlude, Λ and the 
Heterotic Landscape

• Data comes from a 
different data set, hep-
th/0602286

• Non-zero value 
indicates instability of 
vacuum beyond tree 
level but, 

• Simplest one-loop 
amplitude for these 
models (many other 
amplitudes related 
through derivatives)

butions to these cosmological constants all vanish as a result of conformal invariance,
we shall focus exclusively on their one-loop contributions. These one-loop cosmolog-
ical constants λ may be expressed in terms of the one-loop zero-point functions Λ,
defined as

Λ ≡
∫

F

d2τ

(Im τ)2
Z(τ) . (5.1)

Here Z(τ) is the one-loop partition function of the tree-level string spectrum of the
model in question (after GSO projections have been implemented); τ ≡ τ1 + iτ2

is the one-loop toroidal complex parameter, with τi ∈ IR; and F ≡ {τ : |Re τ | ≤
1
2 , Im τ > 0, |τ | ≥ 1} is the fundamental domain of the modular group. Because
the string models under consideration are non-supersymmetric but tachyon-free, Λ
is guaranteed to be finite and in principle non-zero. The corresponding one-loop
vacuum energy density (cosmological constant) λ is then defined as λ ≡ −1

2M
4Λ,

where M ≡ Mstring/(2π) is the reduced string scale. Although Λ and λ have opposite
signs, with Λ being dimensionless, we shall occasionally refer to Λ as the cosmological
constant in cases where the overall sign of Λ is not important.

Of course, just as with the ten-dimensional SO(16)×SO(16) string, the presence
of a non-zero Λ indicates that these string models are unstable beyond tree level.
Thus, as discussed in the Introduction, these vacua are generically not situated at
local minima within our “landscape”, and can be expected to become unstable as
the string coupling is turned on. Nevertheless, we shall investigate the values of
these amplitudes for a number of reasons. First, the amplitude defined in Eq. (5.1)
represents possibly the simplest one-loop amplitude that can be calculated for such
models; as such, it represents a generic quantity whose behavior might hold lessons
for more complicated amplitudes. For example, more general n-point amplitudes
are related to this amplitude through differentiations; a well-known example of this
is provided by string threshold corrections [30], which are described by a similar
modular integration with a slightly altered (differentiated) integrand. Second, by
evaluating and analyzing such string-theoretic expressions, we can gain insight into
the extent to which results from effective supergravity calculations might hold in a
full string context. Indeed, we shall be able to judge exactly how significant a role the
massive string states might play in altering our field-theoretic expectations based on
considerations of only the massless states. Third, when we eventually combine this
information with our gauge-group statistics in Sect. 6, we shall be able to determine
the extent to which gauge groups and the magnitudes of such scattering amplitudes
might be correlated in string theory. But finally and most importantly, we shall
investigate this amplitude because it relates directly back to fundamental questions
of supersymmetry breaking and vacuum stability. Indeed, if we can find models for
which Λ is nearly zero, we will have found good approximations to stable vacua with
broken supersymmetry. We shall also discover other interesting features, such as
unexpected one-loop degeneracies in the space of non-supersymmetric string models.
All of this may represent important information concerning the properties of the
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landscape of non-supersymmetric strings.
In general, the one-loop partition function Z(τ) which appears in Eq. (5.1) is

defined as the trace over the full Fock space of string states:

Z(τ) ≡ Tr (−1)F qHR qHL . (5.2)

Here F is the spacetime fermion number, (HR, HL) are the right- and left-moving
worldsheet Hamiltonians, and q ≡ exp(2πiτ). Thus spacetime bosonic states con-
tribute positively to Z(τ), while fermionic states contribute negatively. In general,
the trace in Eq. (5.2) may be evaluated in terms of the characters χi and χj of the
left- and right-moving conformal field theories on the string worldsheet,

Z(τ) = τ−1
2

∑

i,j

χj(τ) Nji χi(τ) , (5.3)

where the coefficients Nij describe the manner in which the left- and right-moving
CFT’s are stitched together and thereby reflect the particular GSO projections inher-
ent in the given string model. The τ−1

2 prefactor in Eq. (5.3) represents the contribu-
tion to the trace in Eq. (5.2) from the continuous spectrum of states corresponding
to the uncompactified spacetime dimensions.

Since the partition function Z(τ) represents a trace over the string Fock space as
in Eq. (5.2), it encodes the information about the net degeneracies of string states at
each mass level in the theory. Specifically, expanding Z(τ) as a double-power series
in (q, q), we obtain an expression of the form

Z(τ) = τ−1
2

∑

mn

bmn qm qn (5.4)

where (m, n) represent the possible eigenvalues of the right- and left-moving world-
sheet Hamiltonians (HR, HL), and where bmn represents the net number of bosonic mi-
nus fermionic states (spacetime degrees of freedom) which actually have those eigen-
values and satisfy the GSO constraints. Modular invariance requires that m− n ∈ ZZ

for all bmn $= 0; a state is said to be “on-shell” or “level-matched” if m = n, and
corresponds to a spacetime state with mass Mn = 2

√
nMstring. Thus, states for

which m + n ≥ 0 are massive and/or massless, while states with m + n < 0 are
tachyonic. By contrast, states with m − n ∈ ZZ $= 0 are considered to be “off-shell”:
they contribute to one-loop amplitudes such as Λ with a dependence on |m− n|, but
do not correspond to physical states in spacetime.

Substituting Eq. (5.4) into Eq. (5.1), we have

Λ =
∑

m,n

bmn

∫

F

d2τ

τ 2
2

τ−1
2 qmqn

=
∑

m,n

bmn

∫

F

d2τ

τ 3
2

exp [−2π(m + n)τ2] cos[2π(m − n)τ1] . (5.5)
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F ≡ {τ : |Re τ | ≤ 1
2
, Im τ > 0, |τ | ≥ 1}

Dienes, K. PRD:73 106010, 2006.

123,573 
tachyon-free models 

with N=0 SUSY

Λ ∼ −C. C.



How are the Λ’s distributed?  

• 73% of models have    
Λ > 0 (AdS space)

• Many different models 
with completely 
different gauge groups 
and particle contents 
nevertheless have the 
exact same  Λ

Figure 11: Histogram showing calculated values of the one-loop amplitude Λ defined in
Eq. (5.1) across our sample of N >∼ 105 tachyon-free perturbative heterotic string vacua
with string-scale supersymmetry breaking. Both positive and negative values of Λ are
obtained, with over 73% of models having positive values. The smallest |Λ|-value found is
Λ ≈ 0.0187, which appears for eight distinct models. (This figure adapted from Ref. [32].)

preference for positive values of Λ, with just over 73% of our models having Λ > 0.
However, we obtained no model with Λ = 0; indeed, the closest value we obtained
for any model is Λ ≈ 0.0187, which appeared for eight distinct models.

Given that we examined more than 105 distinct heterotic string models, it is
natural to wonder why no smaller values of Λ were found. This question becomes
all the more pressing in light of recent expectations [8] that the set of cosmological
constant values should be approximately randomly distributed, with relative spacings
and a smallest overall value that diminish as additional models are considered.

It is easy to see why this does not happen, however: just as for gauge groups, it
turns out that there is a tremendous degeneracy in the space of string models, with
many distinct heterotic string models sharing exactly the same value of Λ. Again, we
stress that these are distinct models with distinct gauge groups and particle content.
Nevertheless, such models may give rise to exactly the same one-loop cosmological
constant!

The primary means by which two models can have the same cosmological constant
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How many different values 
of Λ were found?

Figure 12: Unexpected degeneracies in the space of non-supersymmetric string vacua. As
evident from these figures, there is a tremendous degeneracy according to which many dis-
tinct non-supersymmetric heterotic string models with different gauge groups and particle
contents nevertheless exhibit exactly the same numbers of bosonic and fermionic states
and therefore have identical one-loop cosmological constants. (a) (left) Expected versus
actual numbers of cosmological constants obtained for the first fifteen thousand models.
(b) (right) Continuation of this plot as more models are examined. While the number of
models examined is insufficient to calculate a precise shape for this curve, one possibility
is that this curve will eventually saturate at a maximum number of allowed cosmological
constants, as discussed in the text. (Right figure adapted from Ref. [32].)

our models may be capable of exhibiting. If this were the case, then we would expect
the number of such matrices {asd} already seen, Σ, to have a dependence on the total
number of models examined, t, of the form

Σ(t) = N0

(

1 − e−t/t0
)

, (5.13)

where N0 is this total number of matrices {asd} and t0, the “time constant”, is a
parameter characterizing the scale of the redundancy. Fitting the curve in Fig. 12(b)
to Eq. (5.13), we find that values of N0 ∼ 5500 and t0 ∼ 70 000 seem to be indicated.
(One cannot be more precise, since we have clearly not examined a sufficient number
of models to observe saturation.) Of course, this sort of analysis assumes that our
models uniformly span the space of allowed {asd} matrices (and also that our model
set uniformly spans the space of models).

As if this redundancy were not enough, it turns out that there is a further re-
dundancy beyond that illustrated in Fig. 12. In Fig. 12, note that we are actually
plotting the numbers of distinct sets of degeneracy matrices {asd}, since identical
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High degree of 
redundancy 
in Λ, thus 

N models does
not imply N

different values
of Λ,  

consequences 
for Bousso- 
Polchinski?

 



How are shatter and Λ 
correlated?

Figure 15: The “inverse” of Fig. 13(a): Here we have binned our heterotic string models
according to their values of Λ and then plotted 〈f〉, the average value of the number of
gauge-group factors, for the models in each bin. The error bars delimit the range 〈f〉± σ
where σ are the corresponding standard deviations. We see that while a particular value
of Λ restricts f to a fairly narrow range, a particular value of f only focuses Λ to lie within
two separate ranges of different central magnitudes |Λ| and opposite signs.

Of course, as we approach the “top” of the curve in Fig. 15 near |Λ| ≈ 0, these
two distinct regions merge together. However, even in this limit, it turns out that
the sizes of the standard deviations depend on which physical quantity in the com-
parison is treated as the independent variable and held fixed. For example, if we
restrict our attention to heterotic string models containing a gauge group of the form
U(1)n × SU(2)22−n (essentially holding f , the number of gauge-group factors, fixed
at f = 22), we still find corresponding values of Λ populating the rather wide range
−400 <∼ Λ <∼ 500. In other words, holding f fixed does relatively little to focus Λ. By
contrast, we have already remarked in Sect. 5 that across our entire sample of ∼ 105

models, the smallest value of |Λ| that we find is Λ ≈ 0.0187. This value emerges
for nine models, eight of which share the same state degeneracies {asd} and one of
which is their “twin” (as defined at the end of Sect. 5). If we take Λ as the indepen-
dent variable and hold Λ ≈ 0.0187 fixed (which represents only one very narrow slice
within the bins shown in Fig. 15), we then find that essentially all of the correspond-
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Highly shattered 
groups 

have smaller Λ



And the list goes on...

• numbers of quark generations 

• numbers of lepton generations 

• Chirality 

• Hypercharge normalizations

• Yukawa couplings 

• etc.



However, there’s one BIG 
issue:

Some of these correlations are NOT STABLE.  
MANY of these correlations will “float”, i.e., evolve 
as the sample size increases!  

WHY????

Simply put, as we explore more of the model space, it gets 
harder to find new models.   Therefore, “rare” properties 

MUST appear more often in the process of obtaining 
additional distinct models!

So what can we do?



• Generic to any landscape study where full 
exploration of model space impossible/
impractical

• Need to find method to overcome “float” so 
that true continuum limits may be found

The Problem of “Float”

This issue has never been addressed before in the literature, but 
plays a huge role in obtaining meaningful statistical results.



Need to re-examine the 
entire process of random 

model generation.  

Start from basic 
probability analysis



General Features of Random 
Searches

• Probability to find new 
model proportional to 
amount of model space 
already explored

• Most model generation 
methods have biases  
which favor certain 
space-time properties 
over others Pnew j =

pj

Ωprob
(Nj − xj)

Pnew = 1− x

N

bias

total models

found models

Ωprob =
n∑

i=1

piNi

Pj =
pjNj

Ωprob

Thus,

assuming a finite number of models



Definition of spaces

•             is a space 
where every model 
occupies the same 
volume

•          is a space 
where every model 
occupies a volume 
proportional to the 
probability of 
production

Ωmodel
Ωmodel

Ωprob

Ωprob

deformation due to bias

analogous to US map rescaled by
population



Comparison of Spaces

every model 
occupies same 

volume

models 
generally 
occupy 
different 
volumes

volume 
relations 

determine 
biases

volume 
relations 

determine 
correlations

Ωmodel Ωprob



Need to simulate model 
production

• Label each model by an integer

• “Randomly” choose an integer to simulate 
model production

• Look at correlations among groups of integers 
(i.e. all integers which are divisible by 3 are 
“good”)



Illustration of Bias Danger

• Apparent correlation 
between good model/
total models floats, or 
changes as the model 
space is explored

• Very hard to 
distinguish between 
physical correlation 
and biases inherent in 
model generation 
method

real 
value

γ =
pgood

pbad
Recall, Pj =

pjNj

Ωprob



• Problem 1: Model Spaces sizes are unknown 
and are possibly different

• Problem 2: Need to eliminate bias

• Solution 1: Find way to compare differently 
sized model spaces

• Solution 2: Find way to restore equal 
probability of production to each model

So now what?



Solution to Problem 1

Recall: Pnew = 1− x

N

measure of how explored space is
number of tries to get

new model increases as
model space explored

use this to compare model spaces at 
equal levels of exploration

Nattempts

Nmodels

=
new way to measure sample sizes



Illustration of solution 1

Three different model space sizes, all with the same bias 
for good models vs bad models



Does comparison method 
overcome the bias issue?

• Illustrates bias quite 
well

• Doesn’t seem to be able 
to eliminate bias

• Can something else be 
found?

γ =
pgood

pbad
Recall, Pj =

pjNj

Ωprob



Recall the Problem:

• All of the boxes are 
different sizes, thus 
some boxes are 
preferred!

• Can we restrict our 
attention to groups of 
all the same sized 
boxes?

Ωmodel

Ωprob

deformation due to bias

Group 1

Group 2

Group 3



New Method of Counting

Pnew = 1− x

NWithin each group: Therefore,
Nattempts

Nmodels

tells how explored each group is, at any point.

xi

xj

∣∣∣∣“
Nattempts i
Nmodels i

=
Nattempts j
Nmodels j

” =
Ni

Nj

Thus,

So long as groups are:

Not:



Quick Confirmation

Ngood/Ntotal =  1/3 as expected!

the old method the new method



Limitations of new method

Case 1
property of 

interest spread 
uniformly amongst 

different biases

correlation stays 
constant even in 

old analysis 
method

Case 2

May only get one 
bias population 

with the property 
of interest

bias of generation 
method overcome 
using new method 

of analysis

Case 3

property of 
interest somewhat 
randomly spread 
amongst different 
bias populations

correlation will 
float even using 

new analysis 
method 

Need to divide up groups based on space-time 
properties



Example 1: Just how 
common is SUSY anyway?

• Less than 30% of 
model space has 
space-time SUSY 

• But, only 1/4 of model 
space has tachyons at 
tree level

• Very rare to find more 
than N=1 SUSY

Class of 
Model

Percentage of 
Model Space

N=0 71.09%

N=1 28.36%

N=2 0.54%

N=4 0.0047%

62.14% tachyon-free

37.86% tachyonic

ALL of these results are stable.



Example 2: Number of 
Unique Gauge Groups

Class of 
Model

Number of 
Unique 
Gauge 
Groups

N=0 107.00

N=1 42.01

N=2 1.00

N=4 .0087

Table Entries :
# of unique gauge groups in this class of models

# of unique gauge groups for N = 2 models



U1 SU2 SU3 SU4 SU5 SU>5 SO8 SO10 SO>10 E6,7,8 SM PS
U1 98.22 96.54 19.58 53.54 2.79 4.03 18.80 6.15 3.02 0.12 18.92 50.97

SU2 95.53 18.92 51.80 2.56 3.92 18.81 5.67 3.38 0.12 17.95 44.82
SU3 9.83 7.68 0.83 0.28 1.64 0.39 0.07 10−3 9.23 6.87
SU4 22.48 1.48 2.65 12.32 4.10 2.02 0.08 7.25 21.19
SU5 0.21 0.08 0.43 0.13 0.03 10−3 0.74 1.28

SU>5 0.20 1.22 0.48 0.24 0.01 0.26 2.26
SO8 3.93 2.09 1.77 0.07 1.45 11.34

SO10 0.48 0.52 0.03 0.32 3.61
SO>10 0.42 0.04 0.05 1.74
E6,7,8 10−3 10−3 0.06

SM 9.02 5.53
PS 17.09

total: 98.79 97.72 19.58 53.61 2.79 4.03 19.83 6.19 3.75 0.14 18.92 51.04

Table 1: N0 Full/Scaled

Group: N = 0 N = 1 N = 2 N = 4
SU3 1 1 1
SU4 4.07 10.37 1.13
SU5 2.01 15.25 0.70
SU>5 51.1 72.1 1.36
SO8 10.4 34.6 .50
SO10 33.8 98.6 0.41
SO>10 57.6 178.0 0.47
E6,7,8 4.5 9.34 1.35

3× 2× 1 0.96 .978 .71
4× 2× 2 3.97 10.2 .51

2

Example 3: Effects of Float 
can be important!

Group: N = 0 N = 1 N = 2 N = 4
U1 98.79 99.94 99.72 89.19

SU2 97.72 97.44 96.57 70.17
SU3 19.58 47.84 60.42 34.13
SU4 53.61 51.04 62.76 42.94
SU5 2.79 7.36 20.29 23.72
SU>5 4.03 6.60 18.80 53.65
SO8 19.83 13.75 19.73 19.82
SO10 6.19 4.83 7.57 15.42
SO>10 3.75 2.69 4.72 19.92
E6,7,8 0.14 0.27 1.02 16.12

3× 2× 1 18.92 46.6 58.65 23.92
4× 2× 2 51.04 47.03 55.52 19.02

Group: N = 0 N = 1 N = 2 N = 4
SU3 1 1 1 1
SU4 2.74 1.07 1.04 1.26
SU5 0.14 0.15 0.34 0.69
SU>5 0.21 0.14 0.31 1.57
SO8 1.01 0.29 0.33 0.58
SO10 0.32 0.10 0.13 0.45
SO>10 0.19 0.06 0.08 0.58
E6,7,8 0.01 0.01 0.02 0.47

3× 2× 1 0.97 0.97 0.97 0.70
4× 2× 2 2.61 0.98 0.92 0.56

Group: SU3 SU4 SU5 SU>5 SO8 SO10 SO>10 E6,7,8 SM PS
N = 0 1 3.87 2.01 51.1 10.4 33.8 57.6 4.5 .96 3.97
N = 1 1 9.37 15.25 72.1 34.6 98.6 178 9.34 .978 10.2
N = 4 1 1.13 .70 1.36 .50 .41 .47 1.35 .71 .51

Group: N = 0 N = 1 N = 2 N = 4
SU3 1 1 1
SU4 3.87 9.37 1.13
SU5 2.01 15.25 0.70
SU>5 51.1 72.1 1.36
SO8 10.4 34.6 .50
SO10 33.8 98.6 0.41
SO>10 57.6 178.0 0.47
E6,7,8 4.5 9.34 1.35

3× 2× 1 0.96 .978 .71
4× 2× 2 3.97 10.2 .51

1

in
 p

ro
gr

es
s

Others float!

Some correlations stay the same 

After accounting for biasResults from earlier sample

Table Entries :
# of models with gauge group containing given factor

# of models with gauge group containing SU3



in
 p

ro
gr

es
s

U1 SU2 SU3 SU4 SU5 SU>5 SO8 SO10 SO>10 E6,7,8 SM PS
U1 98.22 96.54 19.58 53.54 2.79 4.03 18.80 6.15 3.02 0.12 18.92 50.97

SU2 95.53 18.92 51.80 2.56 3.92 18.81 5.67 3.38 0.12 17.95 44.82
SU3 9.83 7.68 0.83 0.28 1.64 0.39 0.07 10−3 9.23 6.87
SU4 22.48 1.48 2.65 12.32 4.10 2.02 0.08 7.25 21.19
SU5 0.21 0.08 0.43 0.13 0.03 10−3 0.74 1.28

SU>5 0.20 1.22 0.48 0.24 0.01 0.26 2.26
SO8 3.93 2.09 1.77 0.07 1.45 11.34

SO10 0.48 0.52 0.03 0.32 3.61
SO>10 0.42 0.04 0.05 1.74
E6,7,8 10−3 10−3 0.06

SM 9.02 5.53
PS 17.09

total: 98.79 97.72 19.58 53.61 2.79 4.03 19.83 6.19 3.75 0.14 18.92 51.04

Table 1: N0 Full/Scaled

Group: N = 0 N = 1 N = 2 N = 4
SU3 1 1 1
SU4 4.07 10.37 1.13
SU5 2.01 15.25 0.70
SU>5 51.1 72.1 1.36
SO8 10.4 34.6 .50
SO10 33.8 98.6 0.41
SO>10 57.6 178.0 0.47
E6,7,8 4.5 9.34 1.35

3× 2× 1 0.96 .978 .71
4× 2× 2 3.97 10.2 .51

2

Final Gauge Group 
Populations

Large groups 
 most common

SM only
 limited by SU(3)

Pati-Salam, GUTs favored over SM for such strings.



Conclusions/Future Work

• Using probability analysis, random model 
generation biases can be overcome 

• Refine understanding of gauge group 
probabilities

• Look at massless particle spectrum to 
determine probability of realizing Standard 
Model

• Use different search techniques to explore 
other model spaces

in progress

in progress



The End


